
Finding Maximum-Length Repeating Patterns in

Music Databases

Ioannis Karydis Alexandros Nanopoulos Yannis Manolopoulos∗

Dept. of Informatics, Aristotle University of Thessaloniki, Greece
emails: {karydis,alex,manolopo}@delab.csd.auth.gr

Abstract

This paper introduces the problem of discovering maximum-length repeating patterns in

music objects. A novel algorithm is presented for the extraction of this kind of pat-

terns from a melody music object. The proposed algorithm discovers all maximum-length

repeating patterns using an “aggressive” accession during searching, by avoiding costly

repetition frequency calculation and by examining as few as possible repeating patterns

in order to reach the maximum-length repeating pattern(s). Detailed experimental results

illustrate the significant performance gains due to the proposed algorithm, compared to

an existing baseline algorithm.

Keywords: maximum-length repeating patterns, data mining, theme discovery, music

databases.

1 Introduction

The continuously increasing spread of music on the Internet as well as in digital music libraries

expands the already immense interest of the public and the entertainment industry in music

databases. An account of research and development issues concerning a variety of digital

music libraries can be found in [4]. As the number of music databases grows rapidly, so does

their size, complexity, usage and accordingly the need to provide flexible and efficient search

and retrieval techniques. Music data, due to their complex structure and their subjectivity

to inaccuracies caused by perceptual and cognitive effects, introduce new challenges. Among

the primary problems that have been examined so far, lays the development of representation

types that can satisfy both semantic as well as efficiency requirements (since music objects

exist in different formats) for content-based information retrieval.

A characteristic representation type for music objects is based on the use of repeating pat-

terns included in a music object, i.e., segments of the music object that appear repeatedly (cf.,
∗Contact author: Dept. Informatics, Aristotle University, Thessaloniki 54124, Greece. Tel: +302310991912,

Fax: +302310991913, email:manolopo@csd.auth.gr

Section 3). In this type, a repeating pattern corresponds to a motif, that is, a minimum-length

pattern which is meaningfully independent and complete within a piece of music. Repeating

patterns can constitute a useful representation for a music object. Their use (through the

notion of motifs) has been extensive through out the history of music [5] as well as in modern

music [3], since they comprise a compact form for indexing the original formats (e.g., raw

audio, MIDI, etc). This is because the total size of the collection of repeating patterns is

smaller than that of the music objects. Therefore, the repeating patterns meet both efficient

and semantic requirements for content-based music data retrieval [19, 13]. For the aforemen-

tioned reasons, repeating patterns have been used to index music sequences for the purposes

of music data retrieval [19]. In addition, they provide a reference point for the discovery of

music themes [28, 39]. A theme (especially in classical music) is a melody that the composer

uses as a starting point for development, which may be repeated in the form of variations1 [39].

Finally, repeating patterns have been considered as characteristic signatures of music objects,

which have the notion of a quantitative measure for music similarity [14].

For the problem of efficient discovery of repeating patterns, recent research has employed

data mining techniques [19, 25, 28, 39]. As the straightforward use of repeating patterns may

conceal numerous difficulties, mainly due to their large number, focus has been given on non-

trivial repeating patterns [19, 28]. Nevertheless, the number of non-trivial patterns can still

be large enough so as to burden their examination by human analysts. For instance, music

objects with size about 1,000 notes can include several tens non-trivial repeating patterns [19],

whereas this number increases for larger musical pieces. This can also impact the effectiveness

of non-trivial repeating patterns in yielding themes, as several of the former may be spurious

and unrelated to themes. Thus, existing research has identified that among the collection of

the non-trivial repeating patterns, the longest ones are those that can be characterized as

feature melody strings and are typically those that can yield to themes [28]. This is further

analyzed in [19], where it is indicated that the longest repeating patterns (constrained by a

maximum length value, e.g., 30) are most likely those that themes are based upon. Following

this direction, [39] proposes a theme discovery method that is based on an initially computed

collection of the longest repeating patterns.2

A straightforward approach for the discovery of the longest repeating patterns would in-
1The variation extent and the repetition frequency of a theme can differ depending on the composer and

the type of music (e.g., classic versus popular music).
2It is worth noticing, that the longest patterns discovered should be examined against several characteristics

(e.g., frequency, duration, rhythmic consistency, position) [30] in order to effectively lead to theme discovery.

Nevertheless, similar to [19], our focus is on the process of identifying the (longest) repeating patterns. Thus

the examination of such factors is out of the scope of this paper.

2

clude their selection in a post-processing step, following the mining of all (non-trivial) repeat-

ing patterns. However, the length of the longest repeating patterns usually tends to be large

(experiments in [19, 25] show that it can reach several tens). Therefore, the straightforward

approach becomes rather inefficient, as a large number of intermediate repeating patterns

(i.e., that are not the longest) have to be examined before reaching the longest ones. What is,

therefore, required is the development of new algorithms that efficiently discover the longest

repeating patterns, while not having to undergo the discovery of many intermediate repeating

patterns.

As the number of these patterns can be up to several tens, efficiency issues require the

avoidance of costly mining calculations by examining as few as possible intermediate patterns

in order to reach fast the set of maximum-length repeating patterns (MLRPs). Interestingly

enough, analogous reasoning has been followed in other data mining fields, e.g., in the mining

of the longest itemsets [7, 27, 43]. Nevertheless, there are important differences (extensively

discussed in Section 2.3) between the latter problem and the mining of the longest repeating

patterns. Briefly, the key points of these differences are that approaches for long itemsets

mining focus on large, disk-resident itemset databases while for the discovery of the longest

repeating patterns, music sequences are main-memory resident and algorithms prioritise im-

proved CPU times. In addition, in the problem of finding MLRPs, algorithms have a repeating

pattern frequency threshold equal to one, while in mining itemsets algorithms such a consid-

eration would produce a large overhead.

Finally, any proposed algorithm should take care of the characteristics that result from

the nature of the examined problem, such as the ordering of notes or their replication within

music sequence, factors that do not appear in related fields works like the frequent itemsets

mining.

1.1 Contribution and Outline

In this paper, we examine the problem of finding the maximum-length repeating patterns in

music databases. Based on prior work on repeating patterns, we focus on note-sequences.

The use of note-sequences for the extraction of repeating patterns has also been adopted by

several previous works, e.g., [19, 25], since it is by note-sequences that music is composed

and music semantics are conveyed to listeners. We propose a novel algorithm that discovers

all maximum-length repeating patterns using a fast ascending, as far as the length of the

patterns is concerned, during searching so as to quickly reach these patterns. To achieve this,

the proposed algorithm avoids the examination of a large number of intermediate patterns

(i.e., of not maximum length) and only considers those patterns that are necessary in order

3

to reach the maximum-length pattern(s).

The technical contributions of this paper are summarized as follows:

• The introduction of the problem of discovering maximum-length patterns in music ob-

jects. In the field of music databases, this problem poses significant requirements due to

the very large length such patterns may have (i.e., a large search space).

• The development of a novel algorithm that efficiently discovers the maximum-length

patterns. The proposed algorithm addresses the characteristics that result from the

nature of the examined problem, i.e., factors like the ordering of notes or their replication

within music sequence (such factors do not appear in work in related fields like the

frequent itemsets mining).

• The detailed experimental results which show the efficiency of the proposed algorithm,

and the performance gains compared to an existing baseline algorithm [19].

The rest of the paper is organized as follows. Section 2 is devoted in related research

in terms of music databases, music pattern discovery, data mining and, in particular, in

long patterns and their unsuitability to be directly applicable. Section 3 discusses one of

the most efficient approaches already researched and describes the motivating issues for this

research. Extending the idea proposed in Section 3, Section 4 provides a complete account

of the algorithm proposed in this paper (supported by a running example). Subsequently,

Section 5 presents and discusses the experimentation and the results obtained. Finally, the

paper is concluded by a summary and possible future work in Section 6.

2 Related Work

2.1 Work in Music Databases

Early works on music information retrieval date back on 1966 [24]. Despite this –rather ahead

of its time– work, very little was done for many years thereafter, until lately an explosive

interest on music IR arose. Many disciplines of music IR have been researched including

the types of queries allowable, similarity algorithms, various mapping schemes for the music

objects and a range of indexing techniques.

Based on the well-studied text, image and video data IR, music IR can be performed using

text (metadata) [1], pieces of structured or unstructured music [6, 16, 23, 41], humming [6,

10, 17, 15, 32] or even classic western musical notation [29] as queries.

4

Music is available in three basic representations: Audio, Time-stamped Events and Com-

mon Music Notation [8]. To achieve semantic, efficiency as well as to overcome data processing

constraints, the previously mentioned basic representations require a mapping. The mapping

process is influenced by music perception and psychoacoustic issues. That is, a variety of

alternatives exist with respect to the characteristic of music that should be retained by the

mapping. In [11, 36] the retained characteristic of music is rhythm and the mapping used leads

to rhythm strings. In [10] music melody and contour are mapped. [12] focuses on properties

such as pitch, duration and loudness, while [16, 23, 41] retain the melody of the music object.

In the field of time-series analysis, several methods have been proposed for various tasks,

e.g., regression, classification, and similarity searching [18]. Nevertheless, the particularities

of music sequences and the different application requirements have lead to the development

of novel methods. For instance, the similarity of two mapped music objects is addressed in

numerous approaches in the literature [30, 34, 40, 17], which mainly depend on the string

matching core technique since, most usually, the mapping procedure for a music object pro-

duces a string of a chosen characteristic.

A number of works [35, 38, 42] have utilised Hidden Markov Models (HMMs) in order to

represent music pieces in a database and the queries posed. In [35], Pikrakis et al. present

a method for automated search of predefined sound patterns within a large number of sound

files, using HMMs. In [38] the authors use a stochastic representation of both music sequences

in the system and the queries, with hidden Markov models in order to handle queries that

contain errors or key and tempo changes. Velivelli et al.([42]) utilise HMMs that can model

predefined patterns and simultaneously identify and match an audio segment for a given query.

All the aforementioned works have utilised HMMs for the purposes of musical query retrieval,

whereas the focus in the research field of theme discovery [19, 25] is to find patterns within

the music sequences.3

Managing the extracted features from the original music objects requires the utilization of

an index scheme in order to keep the retrieval time close to constant. A number of alternatives

have been proposed by [9, 11, 17] in order to manage different features extracted from music

data and support several search functions.

2.2 Mining Repeating Patterns and Theme Discovery

The process of mining repeating patterns is described in [19, 28], where two algorithms are

proposed for the discovery of non-trivial repeating patterns and feature melody string. The
3Regarding the related work on sequence mining (e.g., [2]), please read the corresponding description in

Section 2.3.

5

first algorithm uses a correlative matrix for the extraction of repeating patterns, while the

second is based on a repeating string-join operation. Experimental results in [19, 28] indicate

the superiority of the latter algorithm in comparison to the correlative matrix approach. More

details for the string-join-based method are given in Section 3.2 along with the motivation. Koh

and Yu, [25] presented a means of mining the maximum repeating patterns from the melody of

a music object using a bit index sequence as well as an extension for extraction of frequent note

sequences from a set of music objects. In the approach taken in [25], all repeating patterns are

found and verified by counting their frequency, while redundancy examination is performed

as a latter step, reaching the maximal repeating pattern set rather inefficiently. Rolland and

Ganascia, [37], propose an approach for approximate sequential pattern extraction in music

data, which considers several peculiarities of music objects and is based on the definition of a

similarity function.

As far as the use of repeating patterns in theme discovery is concerned, Smith and Med-

ina [39] proposed a pattern matching technique leading to theme discovery, that is based on

a collection of previously found longest repeating patterns. Meek and Birmingham in [30]

identify numerous features, that need to be extracted from each music object for the discov-

ery of themes. Among them, they considered as most important the position of the theme

(favoring the themes appearing earlier in the music object). As described, such features can

be used for the discovery of themes from the repeating patterns found. Thus, both [39] and

[30] can be considered as complementary to the problem described in this paper. In addition,

an interesting web-based system for theme discovery is presented in [26].

Patterns may not only be in one voice (the case of polyphonic music), as a pattern may be

distributed across several simultaneously sounding voices. [21] and [22] present a number of

different algorithms for the discovery of such patterns, including distributed pattern matching

with at most k-differences (motif evolution).

The previously mentioned works primarily address the problem of finding all repeating

patterns and generally are concerned with their relation with the set of themes. In contrast,

our work focuses on finding all MLRPs4, a problem which, to our knowledge, has not been

examined so far in the context of musical data. At this point the semantic value of MLRPs

must be addressed. Existing results in [28, 19] indicate that “many repeating patterns (at least

for the longest ones) of a real music object are intentionally created by its composer” [28].

Accordingly, the existence of the MLRPs (i.e., the longest patterns) is intentional. Therefore,

the need for their discovery is evident, since it yields to information about the composer’s

objective.
4C.f., MLRPs are the repeating patterns with the maximum length – see Definition 3.

6

Moreover, as previously mentioned, MLRPs are themselves repeating patterns (RPs) and

additionally they “contain” all RPs that can be derived as their subsequences. Thus, MLRPs

inherently carry the semantic value of the corresponding RPs (the MLRPs themselves and the

RPs that are their subsequences). The semantic value of RPs is analyzed in [28, 12, 19, 25].

In particular, the experimental results in [28] illustrate an 100% recall in extracting musical

motives from repeating patterns (i.e., a motive must always be a repeating feature). Results

in [28, 19] show that the clustering of music objects can effectively be done based on repeating

patterns. However, it should be made clear that MLRPs are patterns that are designated to

reveal a different, new aspect of the music objects. Since we are not interested in finding all

the existing repeating patterns, we do not focus on relating the proposed type of patterns with

the set of all motives.5

2.3 Mining Long Itemsets

In the field of itemsets mining, several methods have been proposed recently for the discovery

of the maximum-length frequent itemsets [7, 27, 43]. The focus of these methods is to avoid

the examination of all frequent itemsets, moving the search towards the fast discovery of the

itemsets having the maximum length or those being the maximal (i.e., that have no superset

that is also frequent). Obviously, there is distinct analogy between the problem examined

in [7, 27, 43] and the problem of discovering MLRPs. However, the process of mining MLRPs

presents important differentiations due to which the aforementioned approaches cannot be

directly applied.

To begin with, the principal difference of the approaches for itemsets is their focus on

large, disk-resident itemset databases. Accordingly, the techniques involved in [7, 27, 43]

reduce the number of database scans while utilizing structures that are optimized to address

the volume of data. In contrast, for the problem of mining repeating patterns and MLRPs, the

music sequence is main-memory resident, and the involved structures and techniques have the

objective of performing fast operations to improve the CPU time. Therefore, the application

of existing techniques for itemsets would be inefficient in this domain, since the optimizations

they consider mainly target the I/O cost. This is the reason why [19] did not consider the direct

use of a mining technique for sequence databases, like [2], for the problem of mining repeating

patterns in music sequences. Additionally, in the problem of mining repeating patterns and
5This is the reason why we did not explore a systematic comparison of our results against manual references,

e.g., [5], since it is out of the scope of the proposed work to relate with the identification of all motives.

Nevertheless, we found that for several classic music objects the discovered MLRPs (or at least some of their

subsequences) could identify some of the motives of the examined music objects.

7

MLRPs, a subsequence of the music sequence is a pattern if its frequency is greater than 1. In

contrast, the algorithms that mine itemsets consider a much larger threshold for the frequency

of patterns6 and, most importantly, they are bound to have a large overhead should they

consider the frequency threshold to be equal to 1.

Based on the aforementioned works, we propose a novel method that targets the specific

application requirements, i.e., we consider optimizations for main-memory resident music se-

quences and for patterns that can appear at minimum twice within the sequence (frequency

threshold to be equal to 1).

3 Background and Motivation

3.1 Definitions

We consider a music sequence to be a sequence of symbols from an alphabet containing discrete

elements. In general, music is characterized by several features. Among them, pitch, rhythm,

timbre, and dynamics are considered to be the most semantically important ones [8]. For

western music in particular, the pitch carries the highest relative weight of information [8].

In general, rhythm cannot be overlooked, for easier presentation however, we focus on the

pitch information. Notice that this assumption has been followed in all related work on the

discovery of repeating patterns [19, 25, 39]. Nevertheless, it is easy to notice that the proposed

methodology can be easily applied to rhythm sequences. A more challenging task is to combine

both the important features (i.e., pitch and rhythm) in the discovered patterns. In this case,

though, slight variations in the themes will produce different combined sequences. What is

required, then, is the development of methods that will not be sensitive to small variations so

as not to loose many repeating patterns. For the above reasons, this research direction will

be addressed in future work.

Definition 1 (Repeating pattern [19]) Given a music sequence S, a repeating pattern P

is a subsequence of consecutive elements of S that appears at least twice in S.

Notice that for the MIDI representation, the size of the alphabet (number of distinct

elements) is equal to 128. The repeating frequency freq(P) (hereafter called frequency) of a

repeating pattern P is defined as the number of appearances of P in S. The length |P | of a

repeating pattern P is the number of notes in P .
6Even small percentages of frequency thresholds, e.g., 0.1%, correspond to a much larger value than the

absolute value of 1.

8

Definition 2 (Maximal repeating pattern [25]) A repeating pattern X is a maximal re-

peating pattern in a music sequence S, if X is a repeating pattern in S and there does not

exist another repeating pattern X ′ in S such that: (i) X is a subsequence of X ′, and (ii) the

freq(X) = freq(X ′).

Definition 3 (Maximum length repeating pattern) A repeating pattern X is a maxi-

mum length repeating pattern in a music sequence S if: (i) X is a maximal repeating pattern

of S, and (ii) there does not exist another repeating pattern X ′ in M for which |X ′| > |X|.

The above definition initially requires for a repeating pattern X, in order to be a maximum

length repeating pattern, not to be a subsequence of another repeating pattern X ′, with

which they have the same frequency, in which case X ′ would be the maximal. In addition

the definition requires that X has the biggest length of any other repeating pattern X ′. For

example, in a sequence S = EABCDEBCABCDBCA, there exist 13 repeating patterns, of

which {ABCD} is the maximum-length repeating pattern (since it is maximal and there does

not exist another repeating pattern X ′ in S for which |X ′| > |X|) , {A,BC, BCD, BCA} are

maximal while the rest are trivial.

Finally, the definition of the problem examined in this paper is as follows: given a music

sequence S, find all (if any) MLRPs.

3.2 The HLC Algorithm - Our baseline competitor

As already discussed in Section 2, Hsu et al. [19] proposed two different techniques for the

discovery of non-trivial repeating patterns. Herein, we focus on the string-join approach, which

is denoted as HLC (from the initials of the authors’ names). HLC will be epigrammatically

considered (through a concise example), so as to describe its suitability as a baseline algorithm

for the extraction of MLRPs (cf. Section 3.3).

HLC utilizes {X, freq(X), (pos1, pos2, . . .)} to represent a repeating pattern found in a mu-

sic sequence S, where X is the repeating pattern, freq(X) is the repeating frequency of X and

each posi, 1 ≤ i ≤ freq(X), is a starting position of X in S. According to [19] the string-join

operation is defined as follows: Assume that {α1α2 . . . αm, freq(α1α2 . . . αm), (p1, p2, . . . , pi)}
and {β1β2 . . . βn, freq(β1β2 . . . βn), (q1, q2, . . . , qj)} are two repeating patterns in the music

feature string of a music object. We define order-k string-join (k ≥ 0) of the two repeating

patterns as follows:

{α1α2 . . . αm, freq(α1α2 . . . αm), (p1, p2, . . . , pi)} ./k {β1β2 . . . βn, freq(β1β2 . . . βn), (q1, q2, . . . , qj)} =

{γ1γ2 . . . γl, freq(γ1γ2 . . . γl), (o1, o2, . . . , oh)}

where
• i = freq(α1α2 . . . αm), j = freq(β1β2 . . . βn), h = freq(γ1γ2 . . . γl),

9

• γt = αt for 1 ≤ t ≤ m, γt = βt−m+k for m + 1 ≤ t ≤ l = m + n− k,
• ot = x = y −m + k, where x ∈ {p1, p2 . . . , pi} and y ∈ {q1, q2 . . . , qj}7,
• ot < ot+1, for 1 ≤ t ≤ h− 1,
• if k > 0, αm−k+s = βs, for 1 ≤ s ≤ k.

HLC develops in two stages: In the first stage, repeating patterns of length 2k (initially,

k = 0) are found, while repeating patterns of length 2k+1 are then found by joining repeating

patterns of length 2k. The search, during the first stage, proceeds until a kl is reached for

which no repeating pattern exists. At this point, HLC has to determine the length L of the

longest repeating pattern, which is unknown in advance. Though, the length of the maximum

repeating pattern L is known to be between 2kl−1 ≤ L < 2kl . Therefore, HLC performs a

binary search of the patterns the length of which is in the range [2kl−1 , 2kl). At the end of the

first stage, the HLC has determined the L and the corresponding maximum-length patterns.

Proceeding to the second stage, in order to ensure that all repeating patterns found in the

previous step are nontrivial, a tree structure called RP-Tree is introduced, each node of which

represents a repeating pattern found. After the removal of all trivial repeating patterns, a

refining procedure identifies all repeating patterns the length of which is not a power of two

(if any). The resulting repeating patterns of the refining process are added to the RP-Tree.

Finally, all trivial repeating patterns are discarded, leaving the RP-Tree to contain only the

maximum and the non-trivial repeating patterns, completing thus the second stage of HLC.

To clarify the understanding of HLC, we exemplify its execution over an example mu-

sic sequence (that will be used as the running example throughout this paper). Let S be

a music sequence, where S = EBCDEHGABFJDEHGJEBCDEABFJ. Following the previ-

ously discussion, the repeating patterns of length 1, 2, 4 do exist, though RP[8]=∅, where

RP[x] denotes the set of repeating patterns with length equal to x. To determine L (and the

corresponding maximum-length repeating patterns), we consider that kl = 3, since 8 = 23;

whereas kl−1 = 2, since 4 = 22 and RP[4] is the last length containing repeating patterns.

Therefore, the algorithm searches the intermediate values of length 5, 6 and 7 discovering

RP[5]={EBCDE,2,(1,8)} RP [6] = ∅ and RP [7] = ∅. Thus, L = 5 and the set of MLRPs is

RP[5]={EBCDE,2,(1,8)} (i.e., RP[5] contains only one such pattern). The result of the first

stage of HLC is illustrated in Figure 1, where the MLRP is depicted at the root. (In Figure 1,

the non trivial repeating patterns are depicted with bold line.) The following stage of the HLC

algorithm is of no interest to this research since it focuses on MLRPs (which are identified in

the first stage), thus for brevity, the steps performed by the second stage of HLC are omitted.
7This condition refers to how the position of elements in sequence γ relates to the positions of appearance

of the sequences α and β.

10

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

Figure 1: The complete graph for the running example of the HLC.

3.3 Motivation

Based on the above discussion, it should be noted that, among the other non-trivial repeating

patterns, HLC discovers the set of all MLRPs. Evidently, this is done in a quite efficient

way, due to the following reasons: (i) Only a logarithmic number of intermediate lengths are

considered to discover the MLRPs (lengths of the form of 2k are examined until kl is found

and, then, a binary search is followed in the range [2kl−1 , 2kl)), whereas a straightforward

approach would check all possible lengths between 1 and L. (ii) Through our experimental

measurements we have found that the most time consuming stage of the HLC is the second

stage, where the building of the RP-tree and the elimination of the non-trivial patterns occur;

in contrast, should the focus be only in finding the MLRPs (and not the set of all repeating

patterns), then the second stage can be entirely omitted.

For the abovementioned reasons, a modified version of HLC (that consists only of its

first stage) can be considered as a good baseline algorithm for comparison purposes, since it

significantly outperforms the straightforward approach. Nevertheless, it must be mentioned

that HLC was not designed to discover only the MLRPs. Although it approaches the set of

MLRPs through a logarithmic number of intermediate levels, at each such examined level it

has to identify all the repeating patterns of that level. As the maximum length can reach

the order of several tens or even few hundreds, HLC has to join and count the frequency of

a large number of repeating patterns. This is mostly evident during the initial steps, when

the number of repeating patterns of relatively small lengths is very large, due to the anti-

monotonicity property8. Therefore, a new approach is required that will avoid as much as

possible the cost to examine (i.e., counting the frequency) intermediate patterns.

Finally, it should be taken into account that Koh and Yu [25] proposed a different approach

for the discovery of repeating patterns. Their method utilizes a bit-index table and identifies

all repeating patterns using a unit length increment. Therefore, the method [25] reaches the
8According to the property of anti-monotonicity, a subsequence X of S cannot be a repeating pattern unless

all the subsequences of X are also repeating patterns (we are not interested about the distinction between

trivial and non-trivial patterns, since MLRPs are by definition non-trivial).

11

level of MLRPs by considering all intermediate lengths, and not a logarithmic number of

levels as HLC does. Moreover, similarly to HLC, at each examined level, the method of [25]

considers all repeating patterns. Experimental results in [25] indicate an improvement of the

overall execution time compared to the HLC algorithm. Nevertheless, these results assumed

the problem of finding all repeating patterns, where HLC had to undergo the expensive second

stage. Therefore, the modified HLC is considered much more efficient than the method of [25],

for the problem of discovering only the MLRPs. Thus, we select the (modified) HLC algorithm

as the baseline method that we use for comparison purposes.

4 The Proposed Method

4.1 Outline of the Approach

In this section we describe the proposed algorithm, which is denoted as M2P (Mining Maximum-

length Patterns). The outline of the approach taken by M2P is as follows. Let S = 〈s1, . . . , sn〉
be a music sequence of length n. Assume that we have identified all repeating patterns of length

two, which is denoted as RP[2] = {〈si, sj〉 : si, sj ∈ S, freq(〈si, sj〉) ≥ 2}. The elements of S

and of RP[2] form a directed graph G(V, E), where the set of vertices V (G) corresponds to

the set of all elements of S and the set of all edges E(G) to the set of all elements of RP[2]

(i.e., a directed edge 〈si → sj〉 in the graph corresponds to the member 〈si, sj〉 of RP[2]).

Each path P in G can be considered as a possible repeating pattern, since all its subpaths

of length two (i.e., the directed edges) are repeating patterns. Therefore, the set of all possible

paths of G forms the search space of the examined problem, as the MLRPs are also repeating

patterns and, thus, correspond to paths of G. A naive approach would consider the complete

graph, where each possible pair of elements of S would form an edge. However, this approach

would lead to an excessive number of possible paths, whereas (due to the anti-monotonicity

property) this number is drastically pruned, due to the fact that edges correspond only to

members of RP[2].

The objective of M2P is to identify in the aforesaid search space those paths that have

maximum length and correspond to a repeating pattern. To attain this, M2P traverses G

by searching for the paths that originate from any of its vertices. While encountering paths,

M2P is concerned in identifying only these, which are candidates to become a MLRP (i.e., not

only repeating patterns). During the traversal, it keeps track of the path C that has already

been visited and: (i) has, so far, the maximum length, and (ii) corresponds to a repeating

pattern (i.e., its frequency has been counted and found to be larger than two)9. The pruning
9Initially, any edge of G can be selected as such path.

12

of the search space is accomplished by discarding the extensions (i.e., appending of vertices

and edges during the traversal) of paths that their frequency has been counted and they were

not found to be repeating patterns, as none of their extensions can lead to an MLRP (due

to anti-monotonicity, since an MLRP is a repeating pattern). Therefore, while advancing the

traversal of G, three cases need be considered:

Case 1: If the currently visited path P has length smaller than |C|, then counting its fre-

quency can be avoided (since it will definitely not be an MLRP).

Case 2: If |P | > |C|, then the frequency of the corresponding pattern in S is calculated,

and if found to be a repeating one, then C is set to be equal to P . Otherwise, if not a

repeating pattern, then (as already explained) the traversal does not have to follow any

path containing P .

Case 3: Finally, if P ’s length is equal to |C|, then the calculation of its frequency is avoided,

at this point. Instead, we maintain a list and link it to C. If after the end of G’s traversal

no other repeating pattern has been found with length greater than |C|, all such paths

linked to C are also candidates to be repeating patterns (C has been identified as an

MLRP, because it was the first path of its length that was was considered during the

traversal, so its frequency has been counted due to case 1).

Following the previously discussed approach, M2P calculates the frequency of a path only if

its length is such that it can possibly become an MLRP. For this reason, it postpones as much

as possible the costly operation of frequency calculation, aiming at finding new candidates

with larger length. The result is that M2P, unlike HLC, avoids calculating the frequency of all

paths of a certain length. Instead, it only determines the frequency of paths of a given length,

until the first path corresponding to a repeating pattern is found. Finally, when finished with

the traversal, all candidates that are linked to the initially found MLRP (i.e., those with length

equal to the found maximum found length for |C|) are examined so as to find all MLRPs, as

there may be more than one. It should be noted that the frequency counting in M2P is done

by using a string matching algorithm10, since the frequency of a path P is equal to the number

of appearances of P (i.e., of the sub-sequence corresponding to P) in S.

4.2 The M2P Algorithm

In this section we describe the algorithmic form of M2P, which is depicted in Figure 2. The

input data of M2P is the music sequence. Initially, M2P calculates all repeating patterns of
10For simplicity, in our implementation we used the Knuth-Morris-Pratt algorithm.

13

length 2 and stores them in the RP[2] set. This is done as an initialization step through a two

dimensional array M , the size of which for the MIDI representation is 128×128. The graph

G is constructed based on the adjacency matrix representation of M . Next, M2P performs a

traversal of G during which it examines the paths P originating from the vertices of G (the

traversal visits the vertices in a depth-first manner).

Within the graph traversal procedure, the length of the current path P is compared against

the Current Maximum Length path, which is denoted as CML (initially, it is set to 2, since

M2P has already determined the RP[2] set). If P ’s length is greater than CML, then M2P

counts the frequency of P and, in case it is greater than 2, P is stored (as the only element)

in the Maximum Length Queue (denoted as MLQ), whereas CML is set equal to the length of

P . In contrast, if P ’s length is equal to CML, then P is added to MLQ without counting its

frequency. Finally, if the search for paths containing P has not been pruned (pruning occurs

when P ’s frequency is counted and found less than two), the traversal continues further by

visiting nodes adjacent to the last node v of P .

After the traversal of G has ended, M2P has established (if any) one MLRP (the first ele-

ment in MLQ). Therefore, it continues by calculating the frequency of all remaining members

(if any) in the MLQ, to find the set of all MLRPs.

The correctness of M2P can easily be deduced as follows. Assume that PM is a MLRP

whose length is M and its elements are 〈p1, . . . , pM 〉. Since PM is a MLPR, its frequency is

equal or greater than 2. Therefore, each consecutive pair 〈pi, pi+1〉 of PM ’s elements belongs to

RP[2] and has a corresponding edge in G. Accordingly, PM will be examined by M2P during

the traversal of G, following the edges 〈pi, pi+1〉 for 1 ≤ i < M . If PM is the first path with

length M that is examined, then its frequency will be counted and PM will constitute the

the first element of MLQ (by deleting any prior entries corresponding to candidates of smaller

length). Otherwise, if other paths of length M have already been included in MLQ, since

no other repeating pattern P ′ exists with |P ′| > M , PM will be examined in the step after

the traversal has terminated, while counting the frequencies of all elements of MLQ. Thus, in

either case, PM will be included in MLQ and will be included to the output of M2P.

4.3 Example

To clarify the description of M2P, we give an example of its execution following the running

example of the paper. For this example, S = EBCDEHGABFJDEHGJEBCDEABFJ, its

RP[2] set and the corresponding graph G are illustrated in Figure 3. Assume (without loss

of generality) that the M2P begins its traversal from the paths emanating from vertex A and

from edge AB in particular. Initially, path ABC is visited (Figure 4a). Since its length is

14

Procedure M2P(MusicSequence S)
begin
1. RP[2] = Find all rp with length 2
2. Construct G(RP[2])
3. CML := 2
4. MLQ := ∅
5. for each v ∈ V (G)
6. Traverse(G, v, 〈v〉, CML, MLQ)
7. endfor
8. for each P ∈ MLQ
9. if (CountFreq(q)≥ 2)
10. Output(P)
11. endif
12. endfor
end

Procedure Traverse(Graph G, Vertex v, Path P , int CML, Queue MLQ)
begin
1. bool prune := false
2. Append(P , v)
3. if Length(P) > CML
4. if CountFreq(P ≥ 2)
5. MLQ := P
6. CML = Length(P)
7. else
8. prune := true
9. endif
7. else if length(P) = CML)
8. Enqueue(MLQ, P)
9. endif
10. if not prune
11. for each u ∈ V (G) and 〈v → u〉 ∈ E(G)
12. Traverse(G, u, P , CML, MLQ)
13. endfor
14. endif
end

Figure 2: The MLRP algorithm.

15

3 > CML = 2, its frequency is counted for and found equal to 0. Therefore, M2P does

not continue the traversal following the path ABC. Then, it continues by examining ABF,

whose frequency is counted equal to 2. Accordingly, CML is set to 3 and ABF is inserted in

MLQ. The traversal continues further with this path, moving on to ABFJ, whose frequency is

counted and found equal to 2. Similarly, CML is set to 4 and MLQ={ABFJ}. Furthermore,

the path ABFJH is considered, but its frequency is counted to be equal to 0. Therefore, we

avoid the examination of further paths that contain it.

EBCDE,2,(1,17)

EBCD,2,(1,17)ABFJ, 2,(8,22) DEHG,2,(4,12)

AB,2,(8,22) BC,2,(2,18) CD,2,(3,19) DE,3,(4,12, 20) EH,2,(5,13) HG,2,(6,14)BF,2,(9,23)

A,2,(8, 22) B,4,(2,9,18,23)C,2,(3,19) D,3,(4,12,20) E,5,(1,5,13,17,21)F,2,(10,24) G,2,(7,15)H,2,(6,14)

FJ,2,(10,24)

J,3,(11,16,25)

EB,2,(1,17)

A
J B

H C

G

EF

D

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H
H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

J

F

H

G

3g

G

H

3h

G

J

H

3i

G

H

G

E

D

J

B

C F

H

G

BCDE,2,(2,18)

Figure 3: The example graph G.

Next, the traversal moves on to vertex B (Figure 4b) and the edge BC in particular.

To begin with, path BCD is examined, the length of which is less than CML, and thus its

frequency is not counted. However, the traversal continues following paths containing BCD,

since it cannot be discarded as not being a repeating pattern (i.e., we have not counted its

frequency). Thus, path BCDE is next examined, whose length is equal to CML. Thus, BCDE

is added to MLQ and MLQ becomes equal to {ABFJ,BDCE}.
Following a similar approach, paths emanating from vertex C (Figure 4c) do no change

CML or MLQ, while the paths resulting from vertex D (Figure 4d) add DEHG to MLQ

(since |DEHG | = CML = 4, its frequency is not calculated), while MLQ becomes equal to

{ABFJ,BDCE,DEHG}. Moving on to vertex E (Figure 4e), the path EBCD is added to

the MLQ (MLQ={ABFJ,BDCE,DEHG,EBCD}). Next, path EBCDE is examined, and its

frequency is counted (since its length is larger than MLQ) and found equal to 2. Therefore,

CML is set to 5, whereas the current elements of MLQ are removed and EBCDE is inserted

in it (since a larger CML value has been found). Finally, all other vertices (F , G, H and J)

offer no change. Thus, as no other candidates exist in the MLQ the set of found MLRPs is

equal to {EBCDE}.

4.4 Developing Optimizations

The efficiency of the M2P algorithm rests with its two main features, the ability to avoid, as

already described above, the calculation of the repeating frequency of the candidates (except

for the first one found for each length) the length of which is equal to the CML, and the

16

A

J

B

H

C

G

E

F

D

H

J

B

H

C

G

E

F

D

H H

C

G

E

D

J

B

F

H

H

G

E

J

B

C F

D

H

G

G

G

G

H

G

E

D

J

B

C F

H

G

(a) (b) (c) (d) (e)

Figure 4: Example of paths originating from vertices A, B, C, D, and E.

ability to avoid completely any measurement concerning candidates with length smaller than

the CML. To improve further its efficiency, we describe two techniques that were used to

enhance the basic form of M2P.

As indicated in [19], the number of repeating patterns with small length is much higher

than the number of repeating patterns with large length. For this reason, we would like

M2P (during the traversal) to reduce the number of examined paths with small length. This

is attained in a preprocessing step. Let ` be the length of repeating patterns that we are

interested in reducing their number. M2P reads the music sequence S and hashes subsequences

of length ` into a hash table, whose bins are integer counters (initially set to 0). During the

traversal, when a path P of length ` is examined, M2P checks the corresponding bin and if its

counter is less than 2, it prunes the traversal for extensions of P as P cannot possibly be a

repeating pattern. However, if the value of the counter is larger than (or equal to) 2, P may

not necessarily be a repeating pattern, due to possible hash collisions in the corresponding

bin. Therefore, hashing can only provide a filter to reduce the number of examined paths

of length `. It should be noticed that an analogous hashing technique has been used in the

case of mining itemsets [33]. As the hashing technique performs satisfactory only for paths

with small length, in our implementation we consider the value of ` to be equal to 3 and 4 (a

separate hash table is maintained for each considered value of `).

The second technique considers the impact of cycles within the graph G. Evidently, the

elements of repeating patterns and MLRPs may not be distinct, thus vertices and/or edges

of G may be visited more than once for the currently examined path (within the traversal

procedure). Let us assume that a path P is a repeating pattern but its length is less than

CML. Then, if P contains a cycle, by using the vertices and edges in the cycle for an appropriate

number of times (i.e., to follow the cycle as many times as needed), P can be extended so as

the length of this extension to become equal to CML. Moreover, due to Case 3 (described in

17

Section 4.1), a large number of paths can be inserted in MLQ. For this reason, we enhance the

basic form of M2P previously described, in order to locate the existence of a cycle within the

currently visited path and, when Case 3 holds for a path containing cycles, we first count its

frequency before appending it to MLQ. Despite the fact that this technique may increase the

number of intermediate paths the frequency of which is counted, it also prevents the excessive

increase of the members of MLQ (frequency of which will have to be calculated at the end of

the traversal procedure).

The two aforementioned optimizations have been found to improve substantially the per-

formance of M2P. For this reason, they have been incorporated to the basic form that was

described earlier and are being used henceforth.

5 Performance Evaluation

In support of the efficiency of the proposed algorithm, this section presents a number of exper-

iments that have been performed. A concise description of the experimentation platform and

data sets is also given followed by a performance analysis based on experimental comparison

of the baseline approach, i.e., the modified HLC, and the proposed approach, M2P.

5.1 Experimental Set-up

All algorithms described have been implemented and performed on a personal computer with

933MHz Intel Pentium III processor, 512 MBytes RAM, operating system MS Windows 2000,

while the developing package utilized was MS Visual C++. The performance measure was

the wall-clock time measured in milliseconds.

The data sets employed for the experiments include real as well as synthetic music objects.

The real music objects originated from MIDI files acquired from the World Wide Web, con-

verted from the MIDI format to melody strings by retaining only the pitch information. These

music objects include classical works (The Four Seasons - Concerto 1 “Spring/La Primavera”-

Allegro composed by A. Vivaldi and “Toreador” composed by G.Bizet) as well as modern

pieces (“Tears in heaven” composed by E. Clapton), since different kinds of music contain

different characteristics and lead to varying lengths of MLRPs. The object size of “Spring/La

Primavera”, “Toreador” and “Tears in heaven” is 8.292, 22.898, 5.786, respectively and de-

notes the length of each note sequence. The note count of an object is the number of discrete

notes the melody string contains and for the previously mentioned music objects the note

count is respectively 50, 72 and 40. As far as the synthetic music object is concerned, follow-

ing [19], they were generated with uniform note distribution, object size 1000 notes, while the

18

note count is variable.

5.2 Results

Initially, we considered real music objects and we focused on classic ones. Herein, we present

results for the “Spring/La Primavera” music object with respect to its size (i.e., by varying

the size of the object that we take into account each time [19]). The results on execution time

are illustrated in Figure 5a. Moreover, Figure 5b depicts the length of the discovered MLRPs

with respect to the object’s size.

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(m

se
c)

Object size

M2P
HLC

(a)

20

30

40

50

60

70

80

90

100

110

120

200 400 600 800 1000 1200 1400 1600 1800

M
LR

P
 le

gt
h

Object size

(b)
Figure 5: Results for the classic music object: (a) Execution time vs. object length; (b) Length

of MLRPs vs. object length.

As expected, the execution time of both algorithms increases with increasing object sizes.

This is due to two reasons. During the increase of the length of the MLRP (see Figure 5b),

both algorithms examine more levels, thus the cost increases. When the length of MLRP

remains constant for increasing object size (e.g., for size larger than 800), although HLC and

M2P do not examine more levels, the processing within the levels becomes more costly (due

to the increase in the number of intermediate repeating patterns). Nevertheless, M2P clearly

outperforms HLC by a factor of more than two in the case of larger object sizes.

In our next experiment we considered modern music objects. Herein, we present results

from “Tears in heaven”, which are depicted in Figure 6. Particularly, Figure 6a demonstrates

the execution time for varying object size, whereas Figure 6b the length of the discovered

MLRPs again with respect to the object’s size. Similarly to the case of classic music object,

execution time for both algorithms increases with increasing object size. It worths noticing

that the lengths of the discovered MLRPs (Figure 6b) are relatively reduced compared to

the case of the classic music object, supporting thus, the previously stated argument that

different kinds of music contain different characteristics. Nevertheless, execution time shows

19

no relative reduction (in the case of HLC it increases slightly), due to the increased number

of intermediate repeating patterns (which is not shown). As in the previous experiment, M2P

compares favorably with HLC and presents an improvement for a factor up to 4 (for larger

object sizes).

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

T
im

e
(m

se
c)

Object size

M2P
HLC

(a)

10

12

14

16

18

20

22

24

26

28

0 500 1000 1500 2000 2500 3000

M
LR

P
 le

gt
h

Object size

(b)
Figure 6: Results for the modern music object: (a) Execution time vs. object length; (b)

Length of MLRPs vs. object length.

In order to examine the scalability of our method, we considered the “Toreador” music

object, which is the largest among the music objects we considered. We varied the object

size we considered each time and the largest size we examined was 20,000 (close to the actual

object’s size). The results (in seconds) are illustrated in Figure 7. As depicted, M2P compares

favorably to HLC.

0

200

400

600

800

1000

1200

1400

1600

1800

4 6 8 10 12 14 16 18 20

tim
e

(s
ec

)

object size (x 1000)

M2P
HLC

Figure 7: Results for Execution time (sec) vs. object size (×1000).

We now move on to more clearly examine the impact of the length of discovered MLRPs on

execution time. We used “Toreador” and varied its size so as to identify the points where an

increase in the object’s size leads to an increase in the length of discovered MLRP. Therefore,

for the points found (expressed by the corresponding length of the discovered MLRPs) we

measured the execution, and the results are depicted in Figure 8a. As shown, the performance

20

of M2P is significantly better than the HLC, especially as the length of the MLRP increases.

This fact illustrates that M2P exhibits good scalability with respect to long patterns.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400

T
im

e
(m

se
c)

MLRP length

M2P
HLC

(a)

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

se
c)

Note count

M2P
HLC

(b)
Figure 8: Results for Execution time vs.: (a) MLRP length (for a classic real music object);

(b) Note count (for synthetic music object).

Next, we measured the impact of the note count. For this reason, we used synthetic music

objects. The length of the objects was set to 1,000 notes and we varied the number of distinct

notes (note count). The results with respect to the note count are presented in Figure 8b.

As expected, the execution time for both algorithm reduces for increasing note count. This

is mainly due to the fact that the length of the repeating patterns and MLRPs tends to

decrease as the note count increases for this type of music objects [19]. However, M2P clearly

outperforms HLC in all cases, verifying the results presented for real objects.

To further understand the behavior of M2P, we examined its performance against the

number of repeating patterns. As described, for a higher number of repeating patterns, HLC

may require higher computation cost, since it has to examine more intermediate patterns before

reaching the longest ones. Therefore, the number of repeating patterns in the music sequence

can affect the performance difference between HLC and M2P. Thus, for the sake of convenience

and to easily control the number of repeating patterns within the same music sequence, we

varied the frequency threshold. As expected, an increase in the frequency threshold results to

less repeating patterns. In our measurement we used “Toreador” with length equal to 5,000

and varied the threshold in the range 1–10. The results are depicted in Figure 9, where the

x-axis illustrates the number of repeating patterns resulting from each frequency threshold

(notice that the values are in inverse order, i.e., the lower numbers correspond to highest

threshold values). As shown, as the number of repeating patterns increases, the performance

difference between HLC and M2P clearly increases. This is in accordance with the earlier

described expectation.

21

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

tim
e

(m
se

c)

num rep patterns

M2P
HLC

Figure 9: Results for Execution time vs. number of repeating patterns.

Finally, we tested another factor that affects the performance of M2P, the size of the hash

tables that are used to optimize its performance. We used the “Spring/La Primavera” music

object with length equal to 2,000 and varied the hash-tables sizes (i.e., the number of elements

stored for each hash table). The results are given in Figure 10. As expected, smaller hash-

tables sizes result to less pruning and, thus, to higher execution times. On the other hand,

there is a point up to which a further increase does not lead to adequate pruning, and the

execution time does not decrease any further.

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16

tim
e

(m
se

c)

hash-tables sizes (x1000)

M2P

Figure 10: Results for Execution time of M2P vs. hash-tables sizes.

6 Conclusions

In this paper we introduced the problem of finding the maximum-length repeating patterns

(MLRPs). This type of patterns helps in addressing the possible large number of plain re-

peating patterns in large music objects, and can be useful in discovering more sophisticated

characteristics like music themes.

We present an efficient, novel algorithm, M2P, for the extraction of MLRPs from music

sequences comprising of pitch information. The efficiency of M2P lays on the technique em-

22

ployed, which avoids costly repetition of frequency calculations by examining as few as possible

intermediate repeating patterns, and aiming at fast reaching of MLRP set.

We have performed detailed experiments and measured several factors, such as the music

object’s size, the length of MLRP, the note count,the number of repeating patterns and hash-

table size. The results indicate significant performance gains (up to a factor of four) compared

to a prior method that was modified so as to constitute an efficient baseline algorithm.

As far as the possible future work is concerned, we will further consider the correspondence

between repeating patterns, MLRPs, and themes. Moreover, as motives may contain a degree

of variation within a single music piece, methods are required that will allow the discovery of

music patterns in a more approximate way (i.e., not necessarily consecutive subsequences) [31].

References

[1] M. Alghoniemy and A.H. Tewfik: “User-Defined Music Sequence Retrieval”, Proceedings 8th ACM
International Conference on Multimedia, pp.356-358, 2000.

[2] R. Agrawal and R. Srikant: “Mining Sequential Patterns”, Proceedings 11th IEEE International
Conference on Data Engineering (ICDE), pp.3-14, 1995.

[3] J.-J. Aucouturier and M. Sandler: “Finding Repeating Patterns in Acoustic Musical Signals: Ap-
plications For Audio Thumbnailing”, Proceedings 22nd AES International Conference on Virtual,
Synthetic and Entertainment Audio, 2002.

[4] D. Bainbridge, G. Bernbom, M.W. Davidson, A.P. Dillon, M. Dovey, J.W. Dunn, M. Fingerhut,
I. Fujinaga and E.J. Isaacson: “Digital Music Libraries-Research and Development”, Proceedings
1st ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp.446-448, 2001.

[5] H. Barlow and S. Morgenstern: “A Dictionary of Musical Themes”, Crown, New York, 1975.

[6] M. Bartsch, W.P. Birmingham, D. Bykowski, R.B. Dannenberg, D. Mazzoni, C. Meek, M. Mellody,
W. Rand and G.H. Wakefield: “MUSART: Music Retrieval Via Aural Queries”, Proceedings 2nd
Annual International Symposium on Music Information Retrieval (ISMIR), 2001.

[7] R. Bayardo: “Efficiently Mining Long Patterns from Databases”, Proceedings ACM International
Conference on Management of Data (SIGMOD), pp.85-93, 1998.

[8] D. Byrd and T. Crawford: “Problems of Music Information Retrieval in the Real World”, Infor-
mation Processing and Management, Vol.38, No.2, pp.249-272, 2002.

[9] E. Chavez and G. Navarro: “A Metric Index for Approximate String Matching”, Proceedings 5th
Latin American Symposium on Theoretical Informatics (LATIN), pp.181-195, 2002.

[10] A.L.P. Chen, M. Chang, J. Chen, J. Hsu, C. Hsu and Y.S. Hua: “Query by Music Segments: an
Efficient Approach for Song Retrieval”, Proceedings IEEE International Conference on Multimedia
and Expo, pp.873-876, 2000.

[11] J.C.C. Chen and A.L.P. Chen: “Query by Rhythm: an Approach for Song Retrieval in Music
Databases”, Proceedings Workshop on Research Issues in Data Engineering (RIDE), pp.139-146,
1998.

[12] H. Chen and A.L.P. Chen: “A Music Recommendation System Based on Music Data Grouping
and User Interests”, Proceedings Conference in Information and Knowledge Management (CIKM),
pp.231-238, 2001.

[13] C. Ta-Chun, A.L.P. Chen and L. Chih-Chin, “Music DataBases: Indexing Techniques and Imple-
mentation”, Proceedings of International Workshop on Multimedia Databases Management Sys-
tems, pp.46-53, 1996.

23

[14] T. Crawford, C.S. Iliopoulos and R. Raman: “String Matching Techniques for Music Similarity
and Melodic Recognition”, Computing in Musicology, Vol. 11, pp.73-100, 1998.

[15] M.J. Dovey: “Adding Content-Based Searching to a Traditional Music Library Catalogue Server”,
Proceedings 1st ACM/IEEE Joint Conference on Digital libraries (JCDL), pp.249-250, 2001.

[16] A.S. Durey and M.A. Clements: “Melody spotting using hidden Markov models”, Proceedings 2nd
Annual International Symposium on Music Information Retrieval (ISMIR), pp.109-117, 2001.

[17] C. Francu and C.G. Nevill-Manning: “Distance Metrics and Indexing Strategies for a Digital
Library of Popular Music”, Proceedings IEEE International Conference on Multimedia and Expo,
pp.889-894, 2000.

[18] J. D. Hamilton: “Time Series Analysis”, Princeton University Press, 1994.

[19] J.L. Hsu, C.C. Liu and A.L.P. Chen: “Discovering Non-Trivial Repeating Patterns in Music Data”,
IEEE Transactions on Multimedia, Vol.3, No.3, pp.311-325, 2001.

[20] J. Hsu, C. Liu and A.L.P. Chen: “Efficient Repeating Pattern Finding in Music Databases”,
Proceedings ACM International Conference on Information and Knowledge Management (CIKM),
1998.

[21] C.S. Iliopoulos and M. Kurokawa: “Exact & Approximate distributed Matching for Musical
Melodic Recognition”, Proceedings Convention on Artificial Intelligence and the Simulation of
Behaviour (AISB), pp.49-56, 2002.

[22] C.S. Iliopoulos, M. Niyad, K. Lenstrom and Y.J. Pinzon: “Evolution of Musical Motifs in Poly-
phonic Passages”, Proceedings Convention on Artificial Intelligence and the Simulation of Be-
haviour (AISB), pp.67-75, 2002.

[23] Y.K. Kang, Y.S. Kim and K.I. Ku: “Extracting Theme Melodies by Using a Graphical Clustering
Algorithm for Content-Based MIR”, Proceedings 5th East-Europena Conference on Advances in
Databases and Information Systems (ADBIS), pp.84-97, 2001.

[24] M. Kassler: “Toward Musical Information Retrieval”, Perspectives of New Music, Vol.4, No.2,
pp.59-67, 1966.

[25] J.L. Koh and W.D.C. Yu: “Efficient Feature Mining in Music Objects”, Proceedings 12th Confer-
ence in Database and Expert System Applications (DEXA), pp.221-231, 2001.

[26] A. Kornstadt:“Themefinder: A Web-based Melodic Search Tool”, Computing in Musicology,
Vol.11, pp.231-236, 1998.

[27] D.-I. Lin and Z. Kedem: “Pincer-Search: An Efficient Algorithm for Discovering the Maximum
Frequent Set”, IEEE Transactions on Knowledge and Data Engineering, Vol.14, No.3, pp.553-566,
2002.

[28] C.C. Liu, J.L. Hsu and A.L.P. Chen: “Efficient Theme and Non-trivial Repeating Pattern Discov-
ering in Music Databases”, Proceedings 15th IEEE International Conference on Data Engineering
(ICDE), pp.14-21, 1999.

[29] D.S. O’Maidin and M. Cahill: “Score Processing for MIR”, Proceedings 2nd Annual International
Symposium on Music Information Retrieval (ISMIR), pp.59-64, 2001.

[30] C. Meek and W.P. Birmingham: “Thematic Extractor”, Proceedings 2nd Annual International
Symposium on Music Information Retrieval (ISMIR), pp.119-128, 2001.

[31] M. Mongeau and D. Sankoff: “Comparison of Musical Sequences”, Computer and the Humanities,
Vol.24, pp.161-175, 1990.

[32] T. Nishimura, H. Hashiguchi, J. Takita, J.X. Zhang, M. Goto and R. Oka: “Music Signal Spot-
ting Retrieval by a Humming Query Suing Start Frame Feature Dependent Continuous Dynamic
Programming”, Proceedings 2nd Annual International Symposium on Music Information Retrieval
(ISMIR), pp.211-218, 2001.

[33] J. Park, M.-S. Chen and P. Yu: “Using a Hash-Based Method with Transaction Trimming for
Mining Association Rules”, IEEE Transactions on Knowledge and Data Engineering, Vol.9, No.5,
pp.813-825, 1997.

24

[34] A. Pienimaki: “Indexing Music Databases Using Automatic Extraction of Frequent Phrases”,
Proceedings 3nd Annual International Symposium on Music Information Retrieval (ISMIR), pp.25-
30, 2002.

[35] A. Pikrakis, S. Theodoridis and D. Kamarotos: “Recognition of Isolated Musical Patterns using
Hidden Markov Models”, Proceedings of the II International Conference on Music and Artificial
Intelligence (ICMAI), pp.133-143, 2002.

[36] C. Raphael: “Automated Rhythm Transcription”, Proceedings 2nd Annual International Sympo-
sium on Music Information Retrieval (ISMIR), pp.99-107, 2001.

[37] P.-Y. Rolland and J.-G. Ganascia: “Pattern Detection and Discovery: The Case of Music Data
Mining”, Proceedings Conference on Pattern Detection and Discovery, pp.190-198, 2002.

[38] J. Shifrin, B. Pardo, C. Meek and W. Birmingham: “HMM-based musical query retrieval”, Pro-
ceedings 2nd ACM/IEEE-CS conference on Digital libraries, pp.295-300, 2002.

[39] L. Smith and R. Medina: “Discovering Themes by Exact Pattern Matching”, Proceedings 2nd
Annual International Symposium on Music Information Retrieval (ISMIR), pp.31-32, 2001.

[40] A. Takasu, T. Yanase, T. Kanazawa and J. Adachi: “Music Structure Analusis and Its Application
to Theme Phrase Extraction”, Third European Conference on Research and Advanced Technology
for DIGITAL LIBRARIES, pp.92-105, 1999.

[41] A. Uitdenbogerd and J. Zobel: “Melodic Matching Techniques for Large Music Databases”, Pro-
ceedings ACM International Multimedia Conference, pp.57-66, 1999.

[42] A. Velivelli, C. Zhai and T. S. Huang: “Audio Segment Retrieval Using a Synthesized HMM”,
Proceedings ACM SIGIR Workshop on Multimedia Information Retrieval, 2003.

[43] M. Zaki, S. Parthasarathy, M. Ogihara and W. Li: “New Algorithms for Fast Discovery of Asso-
ciation Rules”, Proceedings International Conference on Knowledge Discovery and Data Mining
(KDD), pp.283-286, 1997.

25

